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Abstract 
 
 
We find that the tendency for investors to mis-react to price changes in the short-term causes stocks to 
become overpriced (underpriced) in response to good (bad) news, thus inducing a weak or negative 
(strong positive) risk-return tradeoff.  We verify this asymmetry through the indirect relation of a non-
negative (a significantly negative) relation between excess market returns and contemporaneous volatility 
innovations conditional on good (bad) news.  The distortion of the risk-return relation is strengthened in 
periods of high investor sentiment.  Our results also demonstrate that inclusion of a price adjustment term 
is critical for reliable estimation of the intertemporal risk-return relation. 
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1. Introduction 

 

The tradeoff between risk and return is one of the core tenets of financial economics.  In 

particular, the intertemporal risk-return relation is vital for the time-varying rational expectations 

hypothesis which implies that rational risk-averse investors revise their expectations in response to 

changing volatility.  For instance, Fama and French (1989) argue that systematic patterns in the 

predictable variation of expected returns are consistent with the intertemporal asset pricing models by 

Lucas (1978) and Breeden (1979), and the notion of consumption smoothing captured by Modigliani and 

Brumberg (1954) and Friedman (1957).  Ferson and Harvey (1991) and Evans (1994) also document the 

importance of time-varying risk premia associated with conditional betas to explain predictable variation 

in expected returns.  

 Despite its importance in asset pricing theories, the actual sign of the intertemporal risk-return 

relation (hereafter IRRR) has been debated for decades, with empirical findings that are mixed and 

inconclusive.  While a positive IRRR is consistent with theoretical predictions, some argue that in reality 
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it can be close to zero or even negative.  For example, French, Schwert and Stambaugh (1987), Campbell 

and Hentschel (1992), Ghysel, Santa-Clara and Valkanov (2005), and Bali (2008) present evidence that a 

substantial amount of intertemporal variation in expected market returns is determined by a positive risk-

return tradeoff.  However, Glosten et al. (1993) argue that the sign of the IRRR can be negative when 

investors are exceptionally optimistic about future stock price performance, thus not requiring a large 

premium for bearing risk.  Abel (1988) argues that a negative relation between conditional risk and the 

risk premium can be consistent with a general equilibrium model when the coefficient of relative risk 

aversion (RRA) is less than one.  Barsky (1989) also documents that the directional effect of an increase 

in risk on stock prices depends on the curvature of the utility function, which suggests the possibility of a 

negative risk-return relation.1  On the contrary, Poterba and Summers (1986), Baillie and DeGennaro 

(1990), Boudoukh et al. (1997), Whitelaw (2000), and Müller et al. (2011) document that the IRRR is 

either close to zero or unstable, causing insignificant time variation in the expected market risk premium.2   

The objective of this paper is to demonstrate that investors’ mispricing could distort the risk-

return tradeoff, such that the intertemporal mean-variance relation may not necessarily be positive.  We 

suggest that the tendency for investors to mis-react to good and bad market news in the short-term causes 

overpricing and underpricing, respectively.3  Mispricing is exploited by rational arbitrageurs’ selling on 

good news and buying on bad news, which ultimately induces asymmetry in the intertemporal risk-return 

relation.  We conjecture that due to arbitrage trading, overpricing (underpricing) under good (bad) news 

                                                           
1 Studies that support a positive intertemporal risk return relation include French, Schwert and Stambaugh 

(1987), Fama and French (1988), Ball and Kothari (1989), Tuner, Startz and Nelson (1989), Harvey (1989), 
Cecchehtti, Lam and Mark (1990), Haugen, Talmor and Torous (1991), Campbell and Hentschel (1992), Scruggs 
(1998), Kim, Morley and Nelson (2001), Ghysel, Santa-Clara and Valkanov (2005), Ludvigson and Ng (2006), and 
Bali (2008). Studies that support a negative intertemporal risk return relation include Campbell (1987), Breen et al. 
(1989), Nelson (1991), Backus and Gregory (1993), Gennotte and Marsh (1993), Whitelaw (1994), Harvey (2001), 
Brandt and Kang (2004) and Ang et al. (2006). 

2 French et al. (1987) find a negative relation between ex-post excess market returns and the unpredictable 
component of conditional market volatility and use it as indirect evidence for a positive relation between ex-ante 
expected returns and predictable volatility. 

3 In contrast to earlier studies that capture periods of mispricing through the low frequency data of Baker 
and Wurgler (2006), we demonstrate that investors’ mis-reaction to daily good and bad market news also 
significantly affects the intertemporal risk-return tradeoff in the same manner as does investor sentiment. 
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weakens (strengthens) the positive intertemporal risk-return relation, such that it is positive conditional on 

bad market news, but non-positive conditional on good market news.   

Our main result is to demonstrate that using daily excess returns on the U.S. value-weighted 

market index during the period 1926-2015, the intertemporal mean-variance relation is negligible or 

negative conditional on a positive prior market return (i.e., good market news) but is significantly positive 

conditional on a negative prior market return (i.e., bad market news).  This asymmetry in the ex-ante risk-

return relation with respect to recent market news is further supported by the indirect relation between 

excess market returns and contemporaneous volatility innovations suggested by French, Schwert, and 

Stambaugh (1987); the indirect risk-return relation is weak or positive conditional on a positive prior 

return but is significantly negative conditional on a negative prior return.   

Our study corroborates the results of Yu and Yuan (2011) and Stambaugh et al. (2015).  Yu and 

Yuan (2011) provide important empirical evidence that supports the conclusion that the sign of the ex-

ante mean-variance relation is not necessarily positive.  They find that the IRRR is strongly positive 

during periods of low market sentiment, but is negligible when market sentiment is high.  To explain their 

result, they argue that sentiment-driven traders have a greater effect on prices in periods of high sentiment 

due to their reluctance to act on low sentiment through short positions, and that sentiment-driven traders 

are also more likely to be naïve and mis-forecast the conditional volatility of returns.  The result is that 

sentiment-driven traders undermine what would otherwise be a positive risk-return relation when 

sentiment is high.  Extending this research, Stambaugh, Yu, and Yuan (2015) show that the combined 

effects of arbitrage risk (i.e., risk that deters arbitrage) and arbitrage asymmetry (i.e., relatively less 

arbitrage activity directed towards overpriced relative to underpriced stocks) can induce a negative 

relationship between aggregate idiosyncratic volatility and expected market return.  They show that the 

effect of idiosyncratic volatility on expected return is strongly negative for overpriced stocks, but positive 

for underpriced stocks.  In aggregate, the negative risk-return relation among overpriced stocks dominates 
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the positive risk-return relation for underpriced stocks, which generates an overall negative risk-return 

relation.4   

The empirical models for returns we study include both a measure intended to capture over- or 

underpricing, and also a process capturing price adjustments to prior mispricing as a control variable 

when estimating the intertemporal risk-return relation.  Using a theoretical model, we derive this 

adjustment term as an important component to the Slutsky equation for equilibrium asset demand.  The 

inclusion of this price adjustment term reflects the fact that even if market volatility remains unchanged, 

there is predictable variation in the expected market return induced by market reaction to prior prices 

which is not considered by the strictly rational models typically used to model the risk-return tradeoff.  

Some examples of investor behavior that can be captured by this adjustment process include negative or 

positive feedback trading (De Long, Shleifer, Summers, and Waldmann, 1990; Sentana and Wadhwani, 

1992; and Nofsinger and Sias, 1999), underreaction (Jegadeesh and Titman, 1993), overreaction (De 

Bondt and Thaler, 1985, 1990), lead-lag effects in cross-autocorrelations (Lo and MacKinlay, 1990), 

delayed overreaction (De Long, Shleifer, Summers, and Waldmann, 1990), self-attribution bias (Daniel, 

Hirshleifer, and Subrahmanyam, 1998), newswatchers and momentum trading (Hong Stein, 1999), and 

liquidity trading (Campbell, Grossman, and Wang, 1993).  One important contribution of this work is to 

show that this adjustment process is a critical control variable for reliable estimation of the intertemporal 

risk-return relation.  Our empirical results show that the inclusion of the adjustment term significantly 

decreases (increases) the magnitude of the IRRR coefficient under a positive (negative) price change.  

This implies that ignoring the adjustment process constitutes a significant model misspecification 

problem, causing an upward (downward) bias in the IRRR coefficient conditional on good (bad) market 

news, which leads to mis-estimation of the expected market risk premium.  

The outline of the paper is as follows.  In Section 2, we develop testable hypotheses.  In Section 3, 

using a theoretical utility maximization model for portfolio choice under uncertainty, we derive the 
                                                           

4 They also show that high (low) sentiment strengthens the negative (positive) relation among overpriced 
(underpriced) stocks, thus inducing a weak or negative (positive) relation between idiosyncratic volatility and 
expected return during periods of high (low) market sentiment. 
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intertemporal risk-return relation and investors’ adjustment behavior as the two main pricing factors.  In 

Section 4, we present our empirical work and interpretation of the results.  Section 5 presents empirical 

results for the ICAPM using size decile portfolios. Section 6 concludes the paper.  

 

 

2. Hypothesis Development 

 

Our hypothesis begins with the notion that investors tend to mis-react to market news in the short-

term, which can lead to the mispricing of stocks, such as overpricing conditional on good news but 

underpricing conditional on bad news.  While price levels in the short-term may be distorted by investors 

with bounded rationality, arbitrageurs who are assumed to be fully rational could always take advantage 

of mispricing.  We conjecture that rational arbitrageurs exploit overpricing and underpricing through 

selling on good news and buying on bad news.5   

Suppose all stocks in the market are in equilibrium such that they are fairly priced in accordance 

with their risk level and the conditional information concerning their fundamentals.  In the simple case, 

good market news may take the form of a general upward revision in expected cash flows, a downward 

revision in the estimate of future risk, or some combination of the two that leads to a higher price level.  

Short-term investors who mis-react to good market news may become overly optimistic about future cash 

flows and/or may forecast future risk to be too low, resulting in a new price level that is too high.  Once 

overpriced, the future return must be relatively low to restore the correct price level, so that as shown in 

Stambaugh, Yu, and Yuan (2015), rational arbitrageurs will try to profit from overpricing.  As more 

arbitrageurs sell short overpriced stocks, the ex-ante risk-return relation observed at the time of 

overpricing will be lower than it would have been if there were no arbitrage.  If the risk-return tradeoff is 

in general positive as standard asset pricing theory predicts, then at times of overpricing, the short sales 

by arbitrageurs would tend to weaken the relation and make it less positive.  Similarly, negative market 

                                                           
5 Note that mispricing is not necessarily eliminated by arbitrageurs. 
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news can take the form of a downward revision in expected cash flows and/or an increase in expected risk 

resulting in a lower price level.  Mispricing resulting from negative market news implies underpricing due 

to pessimistic revisions in expected cash flows that are too negative and/or increases in expected risk that 

are too high.  Rational arbitrageurs will exploit underpricing through purchasing underpriced stocks that 

produce relatively high future returns.  Thus, at the time of underpricing the ex-ante risk-return tradeoff 

would tend to be more positive than it would otherwise be absent arbitrage.  Therefore, conjecturing that 

arbitrageurs’ short-sale on good (bad) market news weakens (strengthens) the positive risk-return relation, 

we hypothesize that the intertemporal risk-return relation is positive conditional on bad market news, but 

is non-positive conditional on good market news.  

The capital market equilibrium condition implies that there is only one price of risk in the market.  

In particular, the intertemporal capital asset pricing model (ICAPM) implies that the predicted slope of an 

asset’s expected return on its conditional covariance should be the representative investor’s relative risk 

aversion, and hence an asset’s expected return can be predicted as a linear function of its conditional 

covariance with the market portfolio under the assumption of a negligible hedge component against 

changing investment opportunities.  This implies that the intertemporal relationship between expected 

returns and conditional risk applies not only to the market portfolio but also to individual stocks or other 

portfolios.  We thus conjecture that the asymmetry in the intertemporal risk-return relation observed for 

the market portfolio should also be observed for the intertemporal relation between an individual stock’s 

expected return and its conditional covariance with the market portfolio.  Therefore, our second 

hypothesis is that the RRA parameter of individual stocks or portfolios is non-positive conditional on 

good news, but is positive conditional on bad news. 

 

3. Theoretical Model  

 

In this section, we derive the Slutsky equation for equilibrium asset demand and use it to 

highlight two channels affecting predictable variation in expected returns.  The first channel is rational 
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investors’ revisions in their expectation in response to the changes in predictable volatility in which 

higher expected volatility commands a higher risk premium.  However, if investors’ revision is not fully 

rational, then updates to expected returns must also tend to correct prior mispricing caused by behaviorial 

biases.  Thus, revisions in investors’ expectations in the short-term can be attributed not only to the risk-

return tradeoff but also to a price adjustment process resulting from the tendency to correct prior 

mispricing.  This implies that the intertemporal risk-return tradeoff and investor behavior are both 

important pricing factors that contribute to predictable variation in expected market returns.  We 

incorporate these two pricing factors in the formal utility maximization model of portfolio choice under 

uncertainty, in which equilibrium asset demand is jointly determined through these two channels of the 

intertemporal risk-return relation and investors’ adjustment behavior.  We use the term “investors’ 

adjustment behavior” to represent all the market or price adjustments to correct prior mispricing that are 

not associated with the risk-return tradeoff.   

Consider a general portfolio model of two-period utility maximization.  An investor chooses 

portfolio X from n risky assets subject to a wealth constraint.  Let xi be a quantity of asset i measured in 

shares and pi be the price of asset i, such that the investor’s net wealth is defined as 


n

i
ii xp

1
.  A value of 

0ix  indicates a long position and 0ix  indicates a short position.  Let ix  be the quantity of asset i 

that the investor initially holds and 


n

i
iixpW

1
 be the investor’s initial net wealth.  Assuming a positive 

initial net wealth, the adjustment to his or her portfolio is based on the following wealth constraint: 

 

0
1




n

i
ii xpW .  (1) 

 

The investor attempts to maximize the following Lagrangian function (L): 

)((
1

1 


n

i
iin xpW)x , ,xUL  ,  (2) 
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where λ is a Lagrangian multiplier.  The utility function is assumed to be continuous and at least twice 

differentiable.  Optimal portfolio X is found by solving the following first order conditions of the 

constrained maximization problem: 

 

0


i
i

px
U    (3) 

0
1




n

i
ii xpW .  (4) 

 

The second order condition for maximization is that the principal minors of the following bordered 

Hessian (H) alternate in sign, beginning positive: 
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Consider a small change in pi that induces changes in the optimal holdings of xi.  Differentiating the first 

order conditions with respect to pi yields the following system of equations:  
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Solving this system yields the following Slutsky equation for the price changes: 
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W

x
xx

D

D

p

x i
ii

ij

j

i








)(
||

||
 ,  (7) 

 

where |Dij| is the cofactor of the ijth element of the bordered Hessian, |D| is the determinant of the bordered 

Hessian, and )( ii xx   is the investor’s excess demand for the ith asset.  For the case of own price change, 

the Slutsky equation can be written as follows:6 

 

W

x
xx

p

x

p

x i
ii

i

U
i

i

i










 **

)( ,  (8) 

 

where 
i

i

p

x


 *

 is the response of xi to changes in its own price, 
i

U
i

p

x




 is the response of xi to pi along with the 

wealth compensated (or adjusted) constraint maintaining the same level of the utility, and 
W

xi


 *

 is the 

response of xi to changes in portfolio wealth resulting from changes in pi.  The first term represents a pure 

substitution effect, while the second term represents a wealth effect. 

 Epps (1975) suggests that in equilibrium, an investor’s excess demand for asset i, (i.e., ii xx  ) 

equals zero so that there is no wealth effect from price changes.  That is, unless there is a sudden 

unexpected change in the representative investor’s stocks of assets, ix  is exactly the same as the 

equilibrium quantity level of the ith asset so that the excess demand for each of the assets is zero in 

equilibrium.  This implies that in equilibrium, changes in asset prices yield only substitution effects.7   For 

the compensation to maintain the same utility level to the variations in net wealth resulting from price 

                                                           
6 See Bierwag and Grove (1966, 1968), Fischer (1972), Epps (1975), Dalal (1983), and Roley (1983) for 

more detail on the derivation and interpretation of the Slutsky equation in asset pricing theory. 
7 Note that the substitution term in asset demand is not necessarily restricted in sign, while the pure 

substitution term is negative in the traditional demand theory. 
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changes, the substitution effect in demand is driven by the revision of investor expectations leading to 

changes in the expected asset price.  Following Epps (1975), we specify the Slutsky equation as follows: 

 

i

e
i

e
i

U
i

i

U
i

i

i

p

p

p

x

p

x

p

x













 *

,  (9) 

 

where e
ip  is the expected price of asset i, and 0




e
i

U
i

p

x
, which implies that investors hold more (fewer) 

shares of asset i when its expected price increases (decreases).  Since rational risk-averse investors’ 

revisions in expectations are determined not only by the intertemporal risk-return relation but also by the 

price adjustments resulting from investor behavior to correct prior mispricing, the Slutsky Equation can 

be expressed as follows:  

 

2

2

U e U e e
i i i i i i i
e e
i i i i i i i

x p x p r p

p p p r p p




       
         

,       (10) 

 

where 2
i  is the variance of asset i, and ri is the risk premium of asset i. We rewrite Equation (10) as 

follows:    

 


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.  (11) 

 

Since a price change in either direction causes volatility, we define 
2

0i

ip





 with 0ip   (i.e., volatility 

increases as price increases) and 
2

0i

ip





 with 0ip   (i.e., volatility increases as price decreases).  The 
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term 2
i

ir




 represents the intertemporal risk-return relation, which based on conventional beliefs is 

expected to be positive for a risk-averse investor.  It should be noted, however, that in this paper we do 

not empirically restrict the sign of the relation.  
e
i

i

p

r




 represents the effect of the risk premium on the 

expected price.  We postulate that an increase to the risk premium negatively affects the expected price, 

so we assume 0



i

e
i

r

p
.8  

i

e
i

p

p




 represents the market or price adjustment resulting from investor behavior 

to correct prior mispricing.  0



i

e
i

p

p
 ( 0



i

e
i

p

p
) indicates that adjustments to mispricing lead to return 

persistence (return reversal).  While positive feedback trading, underreaction, delayed overreaction, trend 

trading, or lead-lag effects in cross-autocorrelations would produce 0



i

e
i

p

p
, negative feedback trading, 

self-attribution bias, and liquidity are examples of adjustment behavior that would produce return 

reversals.  If investor adjustment behavior induces predictable variation in returns as many empirical 

studies have documented, then equation (11) makes it evident that this adjustment term must also be 

included when measuring the intertemporal risk-return relation.  In the empirical work that follows, we 

employ an autoregressive model in return dynamics to capture the empirical nature of this adjustment 

process.9 

The main features of Equation (11) are as follows: (a) equilibrium asset demand is a positive 

monotonic function of the expected price and (b) revisions in investor expectation are driven by two 

                                                           
8 The negative effect of the risk premium on the concurrent price of an asset is indeed caused by the 

negative effect of the risk premium on the expected price of the asset. 
9 Assuming that the risk-return tradeoff and return persistence are evidence of efficient and inefficient 

pricing, respectively, Kinnunen (2014) examines the relative contributions of the risk-return tradeoff and return 
autocorrelation in driving time-varying expected market returns that might depend on market condition 
approximated by the volatility and volume information.  While specifying both the risk-return tradeoff and return 
autocorrelation in an ad-hoc return generating process, Kinnunen (2014) does not provide a theoretical framework 
for the empirical model nor does it examine the interaction effect of the risk-return tradeoff and autocorrelation on 
the RRA parameter under price changes.  
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channels, the intertemporal risk-return relation and investor adjustment behavior.  While the first term in 

Equation (11) represents the effect of the intertemporal risk-return relation on the expected price, the 

second term represents the effect of investor adjustment behavior to correct prior mispricing on the 

expected price.10  In sum, Equation (11) provides a strong rationale for our suggestion that the 

intertemporal risk-return tradeoff and investor adjustment behavior are both important pricing factors that 

are jointly attributable to predictable variation in expected market returns.   

 

 

4. Estimation  

4.1.  The Empirical Models 

 

Merton (1973) proposed that the expected market risk premium is a linear function of its 

conditional variance and its covariance with investment opportunities.  Merton (1980) showed that when 

the hedge component related to changing investment opportunities is negligible, the conditional market 

risk premium is proportional to conditional market volatility.  We employ Merton’s simple linear form of 

the risk-return relation between the expected market risk premium and conditional market volatility as a 

basic model.  In order to incorporate differential effects of positive and negative price changes on the 

intertemporal risk-return relation, we specify the following model with the two dummies for positive and 

negative price changes: 

 

Model 1: 1,
2

1,1111, ˆ)(   tmtmtNtPtm NdPdcr  ,  (12) 

 

                                                           
10 While there are other approaches to specify the Slutsky equation for asset demand, the Slutsky equation 

proposed in this paper leads to a proper setting for examining the asymmetric effect of a positive and negative price 
change on asset demand through the intertemporal risk-return relation and price adjustments, which is the main 
focus of this paper. Other approaches are known to be preferred for estimating the time-varying risk premium. See 
Bierwag and Grove (1966, 1968), Fischer (1972), Epps (1975), Dalal (1983), and Roley (1983) for more details on 
the Slutsky equation that we consider for the asset pricing theory. 
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where rm,t+1 is the excess market return as a proxy for the expected market risk premium and 2
1,

ˆ tm  is the 

conditional market volatility.  Pdt+1 and Ndt+1 are the dummy variables that capture prior d-day positive 

and negative price changes (or returns), respectively.  Positive and negative price changes are determined 

by the sign of the mean-deviated excess market returns, which are defined as em,t = rm,t – E(rm).  P1t+1 and 

N1t+1 are the dummies to capture a prior one-day positive and negative price change, respectively, such 

that  P1t+1 = 1 when em,t > 0 and N1t+1 = 1 when em,t < 0.  Likewise, P2t+1 = 1 when em,t > 0 and em,t-1 > 0 

while N2t+1 = 1 when em,t < 0 and em,t-1 < 0.  The main feature of Model 1 is that the intertemporal risk-

return relation is state dependent, in that the relative risk aversion (RRA) parameter is measured by δP and 

δN under prior positive and negative price changes, respectively.  This setup of the intertemporal risk-

return relation along with price dummies is in the same spirit as Yu and Yuan (2011), who use dummy 

variables to capture high and low sentiment regimes.  

  As shown in Equation (11) in Section 3, investors’ adjustment behavior to correct prior 

mispricing and the intertemporal risk-return relation are both important contributors to the expected 

market risk premium.  Thus, in the estimation of the RRA parameter, we augment the above simple linear 

model of the intertemporal risk-return relation with an AR(p) process as a way of incorporating the price 

adjustment process: 

 

Model 2: 1,
1

1,
2

1,1111, ˆ)( 


  tm

p

j
jtmjtmtNtPtm rNdPdcr  ,   (13) 

 

where 




p

j
jtmjr

1
1,  is a pth order autoregressive term that captures the adjustment process induced by 

investor behavior to correct prior mispricing. j  is the jth order return autocorrelation coefficient.  

0)1(
1




p

j
j  is defined as a positive price adjustment leading to return persistence, while 
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0)1(
1




p

j
j  is defined as a negative price adjustment leading to return reversal.  In the following 

empirical section, we discuss why an AR(5) process is an appropriate choice to capture the price 

adjustment process, and demonstrate that inclusion of this adjustment term is critical for reliable 

estimation of the RRA parameter in the intertemporal risk-return relation.  

 By convention, the intertemporal risk-return relation includes a constant term in the regression to 

account for market imperfections that are not associated with the risk-return tradeoff.  We thus consider 

the possibility that there may be an asymmetry even in the nature of market imperfections under prior 

positive and negative price changes.  To capture the potential asymmetry in market imperfections, we 

incorporate price change dummies on the constant term in the following Model 3: 

 

Model 3: 1,
1

1,
2

1,1112111, ˆ)( 


  tm

p

j
jtmjtmtNtPtttm rNdPdNdcPdcr  ,  (14) 

 

where market imperfections are captured by c1 under prior positive price changes and by c2 under prior 

negative price changes.  As before, the RRA parameter is measured by δP under prior positive price 

changes and δN under negative price changes and 




p

j
jtmjr

1
1,  is the price adjustment term included as a 

control variable.   

 

4.2.  The Data and Volatility Measures 

 

We use the daily returns on the CRSP value-weighted index as the market portfolio return.  The 

data covers the period from January 1926-December 2015 (23,786 observations).  We use the U.S. one-

month Treasury bill rate reported by Ibbotson Associates as the risk-free rate.  Since the risk-free rate is 

only available on a monthly frequency, we construct the daily risk-free rate by assuming that it is constant 
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within a month.  The daily excess market portfolio return is the difference between the nominal daily 

market portfolio return and the daily risk-free rate.  In addition to the market index, we use ten size decile 

portfolios formed from NYSE, AMEX, and NASDAQ stocks.  

Table 1 presents descriptive statistics for the daily excess returns of the market portfolio and 10 

size decile portfolios. All the portfolio returns exhibit the commonly observed properties of high kurtosis 

and significant return persistence at short horizons.  For most of the return series, return autocorrelations 

are significant up to the 4th or 5th order at the 5% level using Bartlett standard errors, and the sum of the 

autocorrelation coefficients up to the 5th order, ψ(1), is positive for all portfolio returns.  Accordingly, we 

specify the AR(5) process to represent the adjustment process in all of the following empirical models.   

As the proxy for conditional market volatility, we employ two conditional forecasts.  For the first 

volatility measure, we use the conditional variance of the daily excess returns ( 2
,tmh ) from estimating the 

EGARCH (1,1) model proposed by Nelson (1991).  The second measure of conditional market volatility 

( 2
,tm ) is estimated from the AR(12) process11 on the squared mean-deviated excess market returns, i.e., 

2
,

2
, )( tmtm eL   for the lag operator L = 12.  Also, for the estimation of the indirect risk-return relation, we 

employ two measures of volatility forecast errors for contemporaneous volatility innovations.  The first 

measure is the volatility forecast errors of the AR(12) process computed as 2
,

2
, tmtme  , and the second 

measure is the forecast errors of the EGARCH model computed as 2
,

2
, tmtm he  .   

To generate the conditional covariance between individual portfolio returns and market returns 

( timh , ), we estimate the dynamic conditional correlation (DCC) multivariate GARCH model proposed by 

Engle (2002) and Engle and Sheppard (2001) with a distributional assumption of the multivariate skewed-

t density.  As a second measure of the conditional covariance, we estimate the AR(12) model on the 

product of individual and market mean-deviated excess returns, i.e., ))(( ,,, tmtitim eeL   , for the lag 

operator L = 12.  Finally, to estimate the indirect risk-return relation of the individual portfolios, we 
                                                           

11 We determine the optimum lag length of 12 by performing the Lagrange Multiplier (LM) test with a 2
(1)  

distribution for incremental lag lengths starting at the lag length of 5. 
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generate two measures of forecast error, one from the DCC-multivariate GARCH as timtmti hee ,,, )(   and 

the other from the AR(12) model as timtmti ee ,,, )(  .  

[Insert Table 1 about here] 

 

4.3.  Estimation and Interpretation 

 

Using excess return (rm,t) on the value-weighted market index as a proxy for the expected market 

risk premium, we first run the regression of 1,,1
2

1,11, ˆ   tmtmtmtm rcr   to measure the constant 

RRA parameter.  Estimation using daily data yields a significant positive value of δ for both volatility 

measures.12  This result is consistent with that of Guo and Neely (2008).  Next, we estimate Models 1 - 3 

to examine how the positive intertemporal risk-return relation is affected by prior positive and negative 

price changes, as well as by the inclusion of the adjustment process as a control variable.  Note that the 

estimation results of Model 1 can be compared with those of Models 2 and 3 to show how they are 

affected by the model misspecification problem resulting from omitting the price adjustment term from 

the specification.  

If our first hypothesis is correct, δP should be non-positive, consistent with relatively low 

expected returns resulting from rational arbitrageurs’ short-selling of overpriced stocks under good 

market news, thereby weakening the typically positive risk-return relation.  Likewise, δN should be 

positive due to relatively high expected returns caused by arbitrageurs’ purchasing of underpriced stocks 

in the wake of bad news, which tends to strengthen the positive risk-return relation.  Table 2 presents the 

estimation results with Newey-West (1987) adjusted t-statistics.  While Panel A reports the estimation 

results for the price dummies representing prior one-day positive and negative price changes, Panel B 

                                                           
12 For the estimation with 2

,tm  as the conditional market volatility, the value of δ (robust t-value) is 2.210 

(2.19) and ϕ1 is 0.068 (5.85). For the estimation with 2
,tmh  as the conditional market volatility, δ (robust t-value) is 

1.454 (2.00) and ϕ1 is 0.074 (6.26). 
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reports the estimation results for the price dummies representing prior two-day consecutive positive and 

negative price changes.   

The estimation results of Models 2 and 3 in Panel A show several notable findings that strongly 

support our conjecture.  First, the estimates of ϕ(1) are significantly positive at the 5% level in all cases, 

implying that the adjustment process resulting from investor behavior to correct prior mispricing leads to 

return persistence.  As mentioned earlier, return persistence at the index level could be a result of cross-

autocorrelations, trend trading, delayed overreaction trading, or positive feedback trading.  The inclusion 

of the price adjustment term significantly improves the adjusted R2 from 0.196% in Model 1 to 1.069% in 

Model 2 and 1.360% in Model 3 for the estimation with 2
,tm  as the conditional market volatility (from 

0.145% to 0.888% in Model 2 and 1.150% in Model 3 with 2
,tmh ).  Second, compared to the estimates in 

Model 1, the inclusion of the price adjustment term also dramatically reduces the value of δP while 

increasing the value of δN.  For example, when using 2
,tm  as the measure of conditional market volatility 

in Model 1, δP has a significantly positive estimate of 3.345 and δN is insignificantly positive at 0.705, 

whereas in Model 2 δP becomes insignificantly negative at ‒0.511 while δN is significantly positive at 

5.988.  A similar change is seen for the estimation using 2
,tmh  as conditional market volatility: δP = 3.452 

and δN = ‒0.884 in Model 1 changes to δP = ‒1.663 and δN = 3.957 in Model 2.  This intriguing finding is 

strong evidence that ignoring the price adjustment term in the estimation of the risk-return relation causes 

a severe model misspecification problem.  Third, the estimation results for Model 3 indicate that the 

asymmetric intertemporal risk-return relation under positive versus negative price changes is robust to the 

presence of asymmetric market imperfections.  For the estimation with 2
,tm  ( 2

,tmh ) as conditional market 

volatility, δP decreases by 4.240 (5.840) while δN increases by 6.067 (5.451).  Finally, the RRA parameter 

is significantly positive under a prior negative price change (i.e., bad market news) and negligible under a 

prior positive price change (i.e., good market news).  This result supports our first hypothesis that the 
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intertemporal risk-return relation is positive conditional on bad market news, but is non-positive 

conditional on good market news. 

Panel B presents the estimation results for prior two-day consecutive positive and negative price 

changes.13  These results are qualitatively similar to those reported in Panel A using one-day price 

changes; the risk-return relation is negative conditional on recent positive returns and positive conditional 

on recent negative returns, the inclusion of the price adjustment term has a significant impact on the 

estimates of the RRA coefficient in the two states, and the results are robust to allowing for asymmetric 

market imperfections, if any.  Notably, the results in Panel B are substantially stronger than those in Panel 

A in that the estimates of δP are significantly negative conditional on two-day returns but insignificantly 

negative conditional on one-day returns.  Similarly, both the magnitude of δN and its statistical 

significance grow when conditioning on two-day returns.  The strength of the results in Panel B relative to 

those in Panel A suggests that investors’ mis-reaction is exacerbated by a sequence of similar returns and 

therefore the distortion of the positive risk-return relation is greater.  The tendency for mis-reaction to be 

greater in response to consecutive similar returns is in general consistent with the representativeness bias 

documented in Tversky and Kahneman (1974), and more specifically the extrapolation of trends 

documented by De Bondt (1993) and incorporated into the unified behavioral model of Barberis et al. 

(1998).  

We also examine the effect of extreme positive and negative price changes on the RRA parameter 

by estimating Model 2 using dummies for one standard deviation positive and negative returns.  For the 

estimation using 2
,tm  as conditional market volatility, the value of δP (robust t-value) is ‒3.073 (‒2.03) 

and δN is 6.540 (4.11).  When using 2
,tmh  as the measure of conditional market volatility, the estimate of δP 

                                                           
13 For the case of two-day consecutive price changes, some observations are not included in the condition 

of P2t+1 = 1 and N2t+1 = 1.  We thus estimated Model 3 with three constant terms specified as 1 1 2 12 2t tP N     .  

The results concerning the RRA coefficients are almost the same as those of the original Model 3 with 1 1c    

and 2 2c   , so we report the estimation results associated with the simpler, original Model 3.  
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is ‒4.401 (‒2.75) and δN is 9.129 (4.96).  The results indicate that mis-reaction is more profound in 

response to extreme price changes. 

[Insert Table 2 about here] 

 

4.4.  Asymmetry in Investors’ Adjustment Behavior 

 

We perform a robustness check to examine whether there is asymmetry in the adjustment process 

that affects the observed distortion of a positive intertemporal risk-return relation.  To do so, we attach the 

price dummies to the price adjustment term in the following Models 4 and 5: 

 

Model 4: 1,1

5

1
1,

2
1,1

5

1
1,

2
1,11, )ˆ()ˆ( 





  tmt

j
jtmNjtmNt

j
jtmPjtmPtm NdrPdrcr  ,        (15) 

Model 5: 1,1

5

1
1,

2
1,21

5

1
1,

2
1,11, )ˆ()ˆ( 





  tmt

j
jtmNjtmNt

j
jtmPjtmPtm NdrcPdrcr  ,          (16) 

 

where  Pj  and Nj  are the jth order return autocorrelation coefficients under a prior positive and negative 

price change, respectively, such that ϕP(1) measures the adjustment process on mispricing under good 

market news while ϕN(1) measures the adjustment process under bad market news.  We use ϕD(1) to 

denote the difference in the adjustment process under good and bad market news, i.e., ϕD(1) = ϕP(1) – 

ϕN(1).  The estimation results are presented in Table 3, which shows similar results to those reported in 

Table 2.  The intertemporal risk-return relation is weak or negative under good market news but is 

significantly positive under bad market news.  The value of ϕD(1) is statistically insignificant in the 

estimation of both models at the 5% level, indicating that there is no asymmetry in the adjustment to 

mispricing under good and bad market news, and that allowing for such an asymmetry in the adjustment 

process does not affect our main results.   

[Insert Table 3 about here] 
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4.5.  Indirect Test of Risk-Return Relation 

 

French, Schwert, and Stambaugh (1987) state that “… a positive relation between the predicted 

stock market volatility and the expected risk premium induces a negative relation between the unpredicted 

component of volatility and excess holding period returns.” [pg.15]  That is, under a positive risk-return 

relation, higher predicted volatility increases the market risk premium and the discount rate, which 

decreases the current stock price.  Thus, under a positive risk-return relation, an unexpected volatility 

change should decrease excess returns.  They examine this association between excess market returns and 

the contemporaneous unexpected changes in market volatility as an indirect test of the mean-variance 

tradeoff.  Campbell and Hentschel (1992) refer to this indirect risk-return relation as the volatility 

feedback effect. 

We perform this indirect test on the relation between excess returns and the contemporaneous 

unexpected volatility changes under prior positive and negative price changes.  Since the estimated risk-

return relation is significantly positive under a negative price change, we expect a strong negative relation 

between excess returns and the contemporaneous volatility innovation under a negative price change.  To 

examine our conjecture, we estimate the following Model 6 with various parameter restrictions on control 

variables:  

 

Model 6:  

1,
1

1,
2

1,11
2

1,1112111, ˆ)11(ˆ)11(11 


  tm

p

j
jtmjtmtNtPtmtNtPtttm rNPNPNcPcr  , (17) 

 

where 2
1,

ˆ tm  is the conditional market volatility, and 2
1,ˆ tm  is the contemporaneous volatility innovation 

representing unexpected volatility changes, for which we use two measures.  The first one is the forecast 

errors of 2
,tmh  estimated from the EGARCH (1,1) model, and is computed as 2

,
2

, tmtm he  .  The second 
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measure is the forecast errors of 2
,tm  estimated from the AR(12) process on the realized volatility series, 

and is computed as 2
,

2
, tmtme  .  The indirect risk-return relation is measured by P (N) under a prior 

positive (negative) price change.  The observed positive (zero or negative) risk-return relation under a 

prior negative (positive) price change is consistent with a significantly negative value of N (nonnegative 

value of P) under a prior negative (positive) price change in estimation of Model 6.  

The estimates of Model 6 are reported in Table 4. Panel A provides results for the estimation with 

2
,

2
,

2
1,ˆ tmtmtm he   as the contemporaneous volatility innovation and 2

,tmh  as the conditional market 

volatility, while Panel B presents the results for the estimation with 2
,

2
,

2
1,ˆ tmtmtm e    as the 

contemporaneous volatility innovation and 2
,tm  as the conditional market volatility.  The estimation 

results in Table 4 show a significant indirect relation between excess returns and contemporaneous 

volatility shocks that supports the observed asymmetric risk-return relation under positive and negative 

price changes.  The estimated value of N is economically and statistically significantly negative at the 5% 

level and is robust over various parameter restrictions.  The result that the indirect risk-return relation 

under a prior negative price change is significantly negative confirms that the ex-ante risk-return relation 

is positive under a prior negative price change.  Likewise, the estimated value of P is positive and is 

significant at 5% or close to significant depending on the specification.  This result is also consistent with 

the observed weak or negative intertemporal risk-return relation under a prior positive price change.  

[Insert Table 4 about here] 

 

4.6.  Intertemporal Risk-Return Relation under Investor Sentiment 

 

Baker and Wurgler (2006) construct an index measuring aggregate investor sentiment and then 

show that the future returns of stocks susceptible to mispricing, because valuing them is difficult or highly 

subjective, depend on the current level of sentiment.  Using Baker and Wurgler’s (2006) composite 
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sentiment index, Yu and Yuan (2011) argue that greater participation of sentiment traders in high 

sentiment periods attenuates the positive intertemporal risk-return relation at these times.  This occurs 

because high sentiment causes these investors to overprice stocks, but these investors are reluctant to take 

short positions when sentiment is low, and therefore the distortion of the risk-return relation caused by 

sentiment traders is concentrated mainly during periods of high sentiment.  Using an empirical model 

based on anomalies to identify stocks that are likely to be overpriced or underpriced, Stambaugh, Yu, and 

Yuan (2015) show that in the cross-section, a negative risk-return relation among overpriced stocks is 

significantly stronger during high-sentiment periods while a positive risk-return relation among 

underpriced stocks is strengthened during low-sentiment periods.  

In this section, we examine if the level of investor sentiment affects short-term mispricing under 

good and bad market news.  If sentiment traders are in general less rational and are more likely to mis-

react to price changes, and these traders are also more active during periods of high sentiment, then the 

distortion of the positive risk-return tradeoff that they cause under overpricing should be greater when 

sentiment is high.  We thus conjecture that the attenuation (reinforcement) of a positive risk-return 

relation under good (bad) market news is stronger in high sentiment periods than in low sentiment periods.  

Using Baker and Wurgler’s monthly composite sentiment index, we construct the daily sentiment 

index by assuming that it is constant within a month.  We estimate the following Model 7 to examine the 

impact of sentiment on the intertemporal risk-return relation under good and bad market news.   

 

Model 7: 

2
, 1 1 1 1 1 1 1 , 1 1 1 , 1 , 1ˆ[( ) ( ) ] [ ( ) ( ) ]l d l d h d h d

m t P t N t t P t N t t m t L t H t m t m tr c P N L P N H L L L H r                            ,       

(18) 

 



24 
 

where 2
1,ˆ tm  is the conditional market volatility, and Lt+1 and Ht+1 are the dummy variables representing 

low- and high-sentiment regimes, respectively, over July 1965–September 2015.14  Following Yu and 

Yuan (2011), we define high and low sentiment periods based on the sign of the orthogonalized sentiment 

index for the month.  The RRA parameter in the low-sentiment regime is measured by δl
P (δl

N) under a 

prior d-day positive (negative) price change, while δh
P (δh

N) measures the RRA parameter under a prior d-

day positive (negative) price change in the high-sentiment regime.  If high sentiment causes greater 

mispricing, overpricing in response to good market news should attenuate the positive risk-return relation 

more in high-sentiment periods than in low-sentiment periods, while bad market news should strengthen 

the positive risk-return relation more in high-sentiment periods than in low-sentiment periods.  If this 

conjecture is correct, the estimated value of δh
P ‒ δl

P (δh
N ‒ δl

N) should be significantly negative (positive).   

We extend the price dummies to the case of 3-day consecutive price changes to examine whether 

a tendency to perceive trends in short samples of returns would induce even greater mispricing, and hence 

exhibit a greater distortion of the positive risk-return relation.  While three consecutive daily returns of 

the same sign is a very short trend, we believe such sequences of returns may be sufficient to have 

significantly different effects on the expectations of investors that are not fully rational.  In particular, the 

tendency for sentiment-driven investors to mis-react to price changes would be amplified by consecutive 

returns of the same sign, and thus the differential effect of high versus low sentiment on the ex-ante risk-

return relation could be more clearly observed by extending the length of the sequence.  For this reason, 

the test of the null hypotheses of δh
P ‒ δl

P ≥ 0 and δh
N ‒ δl

N ≤ 0 is conducted using the results for 3-day 

consecutive price changes and is shown in Panel C.15   

The estimation results for Model 7 are reported in Table 5.  Panel A shows the results for a prior 

1-day positive or negative price change, while Panels B and C show the results for prior 2- and 3-day 

consecutive positive and negative price changes.  There are several notable findings.  First, in all three 

                                                           
14 We thank Jeffrey Wurgler for making the sentiment index data available at 

http://people.stern.nyu.edu/jwurgler/. 
15 The results shown in Panel C of Table 5 are also observed using dummies for 4-day prior consecutive 

positive and negative returns.  We omit these results for brevity. 
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panels, in the low-sentiment regime the estimated value of the RRA parameter is either negative or close 

to zero conditioned on good market news, and highly positive under bad market news.  The statistical 

significance of these estimates is somewhat weaker than our earlier results, consistent with the idea that 

short-term mispricing does distort the RRA even in low-sentiment periods, but the effect is not as strong 

due to less participation of sentiment traders.  Second, during high-sentiment periods, mispricing under 3-

day consecutive price changes causes a greater impact on the risk-return relation when compared to 1-day 

and 2-day consecutive price changes.  For example, when using 2
1, tmh the estimated value of 2.601 for δh

P 

in Panel A dramatically decreases to ‒13.546 in Panel C, and the estimated value of δh
N increases from 

1.563 in Panel A to 10.286 in Panel C.  In results not reported in Table 5, we confirm that this pattern in 

the effect of sentiment level on the RRA parameters extends to 4-day consecutive price changes, where 

the estimated values of δh
P (δh

N) further decrease to ‒19.110 and ‒18.033 depending on whether or not the 

model allow for asymmetric market imperfections (increase to 15.080 and 15.522).16  The results 

demonstrate that when sentiment is high, a greater number of consecutive positive or negative price 

changes amplifies mispricing and the distortion it causes on the RRA parameter.  Note that this pattern is 

not clearly observed in low sentiment periods.  

Third, the results verify our conjecture that the distortion of the intertemporal risk-return relation 

is greater in high-sentiment periods than in low-sentiment periods.  We test our conjecture using the null 

hypotheses of δh
P ‒ δl

P ≥ 0 and δh
N ‒ δl

N ≤ 0 for the case of 3-day consecutive positive and negative price 

changes.  Our conjecture can be verified by significantly negative and positive values for δh
P ‒ δl

P and δh
N 

‒ δl
N, respectively.  The test results in Panel C show that the estimated values of δh

P ‒ δl
P (δh

N ‒ δl
N) when 

using 2
1, tmh  are ‒9.405 and ‒8.759 depending on the allowance for asymmetric market imperfections 

(6.924 and 7.442), and all differences are statistically significant at the 5% level.  The results for 2
1, tm  

also show a statistically significant negative (positive) value of δh
P ‒ δl

P (δh
N ‒ δl

N) at the 10% (5%) 

                                                           
16 The results for 2

,tm  under 4-day consecutive price changes show that the estimated values for δl
P (δl

N) are 

‒8.164 (3.194) and ‒8.526 (2.811).  The results are not reported because of space limitations, but are available upon 
request.   
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level.17  The results verify that high sentiment results in greater mispricing, such that good (bad) market 

news has a greater negative (positive) impact on the risk-return relation in high sentiment periods than in 

low-sentiment period.   

  [Insert Table 5 about here] 

 

4.7. Sub-periods Analysis 

 

We perform sub-periods analysis to examine the robustness of our main results and the stability 

of our models’ description of an asymmetric risk-return relation and the significance of investors’ 

adjustment behavior leading to return persistence.  Using two sub-samples with an equal number of 

observations, we estimate Models 1, 2, and 3 to check if our model can fit the two subsamples.  We report 

the estimation results obtained from using 2
,m th  as the measure of the conditional market volatility.  These 

results are reported in Table 6, which indicates that our main results obtained from the full sample period 

are still present in the two subsamples.  Notable findings are as follows.  First, the estimation results of 

Models 2 and 3 show that the asymmetry in the risk-return relation documented in the full sample period 

is still significant in both of the sub-periods.  For both sub-periods, the estimated RRA parameter is 

significantly positive under a prior negative price change but weak or negative under a prior positive price 

change, implying that good (bad) market news weakens (strengthens) the positive risk-return relation.  

Notably, for both sub-periods, the magnitude of the RRA coefficient is much greater following two 

consecutive price changes than under a prior one-day price change.  This result is also consistent with the 

result obtained from the full sample period, in which mispricing caused by short-term mis-reaction is 

more severe after a sequence of similar returns, and hence the asymmetry resulting from the distortion of 

the risk-return relation arising from mispricing is greater under two consecutive positive and negative 

price changes. 

                                                           
17 We also perform the same test for the case of 4-day consecutive positive and negative price changes.  As 

expected, the t-values for the null are all statistically significant at the 5% level.   
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Second, for both sub-periods the inclusion of the price adjustment term significantly decreases 

(increases) the magnitude of the RRA coefficients under a positive (negative) price change.  When 

compared to the results of Model 1, the estimation results of Models 2 and 3 indicate that for both sub-

periods, the estimated value of δP significantly decreases while the estimated value of δN increases 

significantly.  The estimated value of δP on average decreases by 5.999 for the first sub-period (5.316 for 

the second sub-period) while the estimated value of δN on average increases by 5.969 for the first sub-

period (4.941 for the second sub-period).  The results verify that ignoring the price adjustment process in 

the estimation of the intertemporal risk-return relation leads to model misspecification and induces an 

upward (downward) bias in estimates of the RRA parameter conditional on good (bad) market news.   

  [Insert Table 6 about here] 

 

We also perform the test of the indirect risk-return relation for the two sub-periods by estimating 

Model 6.  We report the estimation results obtained from using 2
,tmh  as the conditional market volatility 

and 2
,

2
,

2
1,ˆ tmtmtm he   as the contemporaneous volatility innovation.  The results are reported in Table 7, 

which shows evidence to support our hypothesis.  First, for both sub-periods, the estimated value of N is 

consistently negative over various parameter restrictions.  While weakly significant for the first sub-

period, the estimated value of N is economically and statistically significant at the 1% level for the 

second sub-period.  This result confirms that the risk-return relation is positive under a prior negative 

price change.  Second, the estimated value of P is significantly positive for the first sub-period, while it 

is negative but statistically insignificant for the second sub-period.  This result is also consistent with the 

observed weak or negative intertemporal risk-return relation under a prior positive price change.  The 

result of a strong negative (nonnegative) indirect risk-return relation verifies a strong positive (non-

positive) ex ante risk-return relation under a negative (positive) price change.  In sum, the results from the 

sub-period analysis also provide robust evidence to support our conclusion concerning the asymmetry in 

the ex-ante risk-return relation.   
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  [Insert Table 7 about here] 

 

 

5. Intertemporal Risk-Return Tradeoff for Size-Based Portfolios 

5.1.  Intertemporal Capital Asset Pricing Model 

 

The capital market equilibrium condition implies that there is only one price of risk in the market.  

In particular, in the intertemporal capital asset pricing model (ICAPM), the predicted slope from 

regressing an asset’s expected returns on the conditional covariance of its return with the market portfolio 

is the representative investor’s relative risk aversion, and hence an asset’s expected return can be 

predicted as a linear function of its conditional covariance with the market.  This implies that the 

intertemporal relation between expected returns and conditional risk applies not only to the market 

portfolio but also to individual stocks or other portfolios.  We thus conjecture that the observed 

asymmetry in the intertemporal risk-return relation documented for the market portfolio should also be 

observed in size decile portfolios formed from NYSE, AMEX, and NASDAQ stocks.  To examine our 

conjecture, we run the following two regressions for each size decile:   

 

Model 8: 1,1,1111, ˆ)(   titimtNtPti NdPdcr  ,           (19) 

Model 9: 
5

, 1 1 1 1 , 1 , 1 , 1
1

ˆ( )i t P t N t im t j i t j i t
j

r c Pd Nd r          


      ,          (20) 

 

where 1tPd  and 1tNd  measure prior positive and negative d-day price changes on the size decile, and

1,ˆ tim  is the conditional covariance of the size decile return with the return on the market portfolio, for 

which we use two measures.  The first measure ( ,im th ) is the conditional covariance forecast that is 

estimated from the DCC multivariate GARCH model on ri,t and rm,t.  The second measure ( ,im t ) is the 
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conditional covariance forecast that is estimated from the AR(12) model on the realized series of tmti ee ,,   

for the ith size portfolio.  
5

, 1
1

j i t j
j

r  

  is the price adjustment term included as a control variable.   

The estimation results with ,im th  as the conditional covariance forecast are presented in Table 8.18  

Similar to the results for the market index returns shown in Table 2, the inclusion of the adjustment term 

significantly improves the adjusted R2.  Across all portfolios, the adjusted R2 increases on average from 

0.953% in Model 8 to 3.730% in Model 9 when conditioning on the 1-day price change, and from 0.327% 

to 3.881% when using 2-day price changes.  In addition to substantially improving model fit, the 

inclusion of the adjustment term in Model 9 significantly reduces the estimated value of the RRA 

parameter (δP) under a prior positive price change, but increases the value of the RRA parameter (δN) 

under a prior negative price change.  Conditioning on 1-day return, the decrease in δP averages 4.641 

across the size deciles (4.605 decrease using 2-day returns), and on average δN increases by 5.055 (6.081 

for 2-day consecutive returns).   More importantly, for all deciles the estimated intertemporal risk-return 

relation from Model 9 is either significantly negative or insignificant under a prior positive price change, 

but significantly positive under a prior negative price change.  Also consistent with our earlier results on 

the market portfolio, the distortion of the RRA is substantially greater when conditioning on 2-day price 

changes.  This is strong evidence to support our conjecture that mis-reaction to good (bad) news weakens 

(strengthen) the positive intertemporal risk-return relation.  Lastly, Panel B shows that the estimates of δN 

decrease with firm size, indicating a size effect in which larger firms tend to exhibit a more negative risk-

return relation under good news relative to smaller firms.  This size effect is consistent with the 

availability of information to which investors may mis-react and/or reflects arbitrage asymmetry in which 

large stocks are easier to short than small stocks.  Large firms may be especially susceptible to short-term 

overpricing because they are more visible and produce more news relative to small firms, and it is easier 

for investors to act on positive versus negative information.  A greater tendency to suffer from short-term 

                                                           
18 The estimation results obtained from using ,im t are almost the same as those shown in Table 8 and are 

not presented here due to space limitations.  They are available upon request.  
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overpricing would cause greater distortion of the risk-return tradeoff conditional on positive news as seen 

for large stocks in Table 8.19  

[Insert Table 8 about here] 

 

5.2.  Indirect Risk-Return Relation 

 

We also perform the indirect test on the relation between excess returns and the contemporaneous 

unexpected volatility changes for the ten size decile portfolios in the following Model 10:  

 

Model 10: 

5

, 1 1 1 1 , 1 1 1 , 1 , 1 , 1
1

ˆ ˆ( ) ( )i t iP t iN t im t iP t iN t im t j i t j i t
j

r c P1 N1 P1 N1 r                


       ,   (21) 

 

where , 1îm t   is the contemporaneous conditional covariance innovation, for which we use two measures. 

The first one is forecast errors associated with ,im th , computed as , , , ,îm t i t m t im te e h    , and the second is 

the forecast errors of ,im t , computed as , , , ,îm t i t m t im te e    .  For the ith portfolio, the indirect risk-return 

relation is measured by iP and iN under a prior positive and negative price change, respectively.  

Table 9 presents the estimation results of the indirect risk-return relation for the ten size portfolios.  

Panel A (Panel B) reports the results for ,im th  ( ,im t ) used as the estimate of conditional covariance and 

, , ,i t m t im te e h   ( , , ,i t m t im te e   ) as the contemporaneous covariance innovation series.  Both panels show 

a strong negative relation between excess returns and the contemporaneous unexpected volatility changes 

for all ten portfolios.  Except for the smallest decile (FS1), the estimated value of N is significantly 

                                                           
19 We also estimated Model 9 with dummies based on prior positive and negative market returns. The 

results were very similar to those shown in Table 8, verifying that larger firms are relatively more easily shorted 
than smaller firms. The results are not reported because of space limitations, but are available upon request.  
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negative at the 5% level, thus indicating that the indirect risk-return relation is significantly negative 

under a prior negative price change.  This result indirectly verifies that the ex-ante intertemporal risk-

return relation for the decile portfolios is significantly positive under a prior negative price change.  The 

estimated value of P is positive for all size portfolios, but its statistical significance is not impressive 

with only 7 out of 20 estimates showing a significantly positive value at the 5% level.  This weak or 

strong positive indirect relation also lends support to the conclusion that the ex-ante intertemporal risk-

return relation is weak or significantly negative under a prior positive price change.  

[Insert Table 9 about here] 

 

 

6. Conclusion 

 

We suggest that investors’ tendency to mis-react to price changes in the short-term causes 

overpricing (underpricing) under good (bad) news, and that this mispricing is exploited by rational 

arbitrageurs’ short selling of overpriced stocks and purchase of underpriced stocks.  We hypothesize and 

demonstrate that due to arbitrage trading, overpricing (underpricing) under good (bad) news weakens 

(strengthens) the positive intertemporal risk-return relation, such that it is positive conditional on bad 

market news, but non-positive conditional on good market news.  Our empirical analysis includes a price 

adjustment term that we derive from the Slutsky equation for equilibrium asset demand to capture 

investors’ adjustment behavior to prior mispricing, such as feedback trading, underreaction, delayed 

overreaction, lead-lag effects in cross-autocorrelations, self-attribution bias, trend trading, and liquidity 

trading.  Our empirical results provide several new and important findings.  First, the risk-return relation 

and investors’ adjustment behavior are both important pricing factors that determine the predictable 

variation in expected returns.  Second, our results show that ignoring the price adjustment process in the 

estimation of the intertemporal risk-return relation leads to a model misspecification problem and causes 

an upward (downward) bias in estimates of the relative risk aversion parameter conditional on good (bad) 
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news, and hence causes the same bias in the estimate of the expected risk premium.  Third, we find that 

the intertemporal risk-return relation is close to zero or even negative conditional on good news but is 

significantly positive conditional on bad news.  This asymmetry in the ex-ante risk-return relation is 

verified by the indirect relation between excess market returns and contemporaneous volatility 

innovations; the indirect risk-return relation is weak or positive under good news but is significantly 

negative under bad news.  Guided by ICAPM, we extend our analysis to size decile portfolios and 

document the same pattern of distortion in the risk-return tradeoff when estimating the relation between 

excess portfolio returns and conditional covariance with the market return when conditioning on positive 

and negative price changes.  The pattern of a weak or negative risk-return relation following positive 

news, and a strongly positive risk-return relation following negative news, is naturally explained by 

investor mis-reaction to price changes.  Lastly, we study how the distortion of the relative risk aversion 

parameter varies across high and low sentiment periods.  We find that while good market news in high-

sentiment periods undermines the positive risk-return relation, bad market news in high-sentiment periods 

strengthens the positive intertemporal risk-return relation.  This result is consistent with the notion that 

high investor sentiment amplifies mispricing.  Therefore, we conclude that investor mis-reaction to daily 

price changes significantly impacts asset prices by causing overpricing and underpricing, which 

ultimately attenuates or reinforces a typically positive ex ante risk-return relation.  Our empirical results 

lend further support to the conclusion of recent studies such as Yu and Yuan (2011) and Stambaugh, Yu, 

and Yuan (2015), that the intertemporal risk-return relation is distorted by over- and underpricing. 
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Table 1 
Descriptive Statistics 

 
We employ daily CRSP value-weighted index returns (VW) and 10 size decile portfolios (small FS1 through large FS10) of the NYSE, AMEX, and NASDAQ 
stocks from January 1926–December 2015 (a total of 23,786 observations for each series) from the CRSP data files. Daily excess returns are computed by 
subtracting the daily average of monthly Treasury bill returns reported by Ibbotson Associates from the daily nominal returns of the portfolios. STDV refers to 
the standard deviation. SKEW is the skewness and KURT is the kurtosis. (j) is the autocorrelation coefficients at lag j. (1) is the sum of the five 
autocorrelation coefficients. The numbers in parentheses below the autocorrelation coefficients are the t-values computed with the Bartlett standard error.  
 

 
Mean 
(×100) 

STDV 
 

SKEW 
 

KURT 
 

 (1) 
 

 (2) 
 

 (3) 
 

 (4) 
 

 (5) 
 

 (1) 
 

VW 0.028 0.011 -0.113 19.796 0.071 -0.046 0.009 0.022 -0.001 0.055 

 
(4.04) 

   
(10.95) (-7.09) (1.39) (3.39) (-0.15)  

FS1 0.052 0.013 1.189 47.061 0.217 0.021 0.064 0.046 0.069 0.417 

 
(6.33) 

   
(33.47) (3.24) (9.87) (7.09) (10.64)  

FS2 0.039 0.012 0.084 32.035 0.236 -0.029 0.075 0.053 0.046 0.381 

 
(5.14) 

   
(36.40) (-4.47) (11.57) (8.17) (7.09)  

FS3 0.033 0.011 0.397 36.193 0.225 -0.042 0.059 0.046 0.041 0.329 

 
(4.60) 

   
(34.70) (-6.48) (9.10) (7.09) (6.32)  

FS4 0.034 0.011 -0.220 25.295 0.207 -0.042 0.062 0.039 0.028 0.294 

 
(4.66) 

   
(31.93) (-6.48) (9.56) (6.01) (4.32)  

FS5 0.033 0.011 -0.121 24.124 0.166 -0.035 0.056 0.036 0.027 0.250 

 
(4.46) 

   
(25.60) (-5.40) (8.64) (5.55) (4.16)  

FS6 0.034 0.011 -0.239 20.296 0.154 -0.041 0.050 0.034 0.021 0.218 

 
(4.56) 

   
(23.75) (-6.32) (7.71) (5.24) (3.24)  

FS7 0.033 0.011 0.010 24.699 0.136 -0.042 0.040 0.035 0.009 0.178 

 
(4.39) 

   
(20.97) (-6.48) (6.17) (5.40) (1.39)  

FS8 0.030 0.011 -0.167 19.232 0.121 -0.038 0.032 0.032 0.000 0.147 

 
(4.15) 

   
(18.66) (-5.86) (4.94) (4.94) (0.00)  

FS9 0.033 0.011 -0.117 19.407 0.115 -0.042 0.023 0.032 0.005 0.133 

 
(4.61) 

   
(17.74) (-6.48) (3.55) (4.94) (0.77)  

FS10 0.027 0.011 -0.070 19.765 0.044 -0.044 -0.001 0.018 -0.004 0.013 

 
(3.85) 

   
(6.79) (-6.79) (-0.15) (2.78) (-0.62)  
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Table 2 
Estimation Results of Intertemporal Risk-Return Relation between Excess Market Returns and Market Volatility 

 
This table reports the estimation results of following models for the period January 1926–December 2015: 
 

Model 1: 1,
2

1,1111, ˆ)(   tmtmtNtPtm NdPdcr      

Model 2: 1,

5

1
,

2
1,1111, ˆ)( 


  tm

j
jtmjtmtNtPtm rNdPdcr    

Model 3: 1,

5

1
,

2
1,1112111, ˆ)( 


  tm

j
jtmjtmtNtPtttm rNdPdNdcPdcr  , 

 

where rm,t+1 is daily realized excess market return and 2
1,ˆ tm  is the daily conditional market volatility, for which we use two volatility forecast measures that are 

estimated on the squared mean-deviated excess market returns ( 2
,

2
, )]([ mtmtm rEre  ).  The first one ( 2

,tmh ) is the conditional variance of the daily excess index 

returns that is estimated from the EGARCH (1,1) model, and the second measure ( 2
,tm ) is the conditional forecast of daily market volatility that is estimated 

from the AR(12) model on the realized volatility series, 2
,tme .  ϕj is the jth order return autocorrelation coefficient.  ϕ(1) is the sum of autocorrelation coefficients, 

i.e., 


5

1
)1(

j
j .  Pdt+1 (Ndt+1) is the dummy to capture prior d-day positive (negative) price changes, such that P1t+1 = 1 when em,t > 0 (N1t+1 = 1 when em,t < 0) 

and P2t+1 = 1 when em,t > 0 and em,t-1 > 0 (N2t+1 = 1 when em,t < 0 and em,t-1 < 0).  The RRA parameter is measured by δP (δN) under prior d-day positive (negative) 
price change(s).  The numbers in parentheses are the Newey-West (1987) adjusted t-statistics.  Adj.R2 (%) is the percentage adjusted R2. 
 
 Panel A: Prior 1-day Price Changes  Panel B: Prior 2-day Consecutive Price Changes 

 2
1,

2
1,ˆ   tmtm h   2

1,
2

1,ˆ   tmtm    2
1,

2
1,ˆ   tmtm h   2

1,
2

1,ˆ   tmtm   

 Model 1 Model 2 Model 3  Model 1 Model 2 Model 3  Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 
c1(×100) 0.016 0.012 0.080  0.004 -0.004 0.065  0.024 0.017 0.089  0.021 0.011 0.074 

 (1.99) (1.49) (6.13)  (0.41) (-0.42) (4.15)  (2.34) (1.58) (5.28)  (1.89) (0.93) (4.56) 
c2(×100)   -0.066    -0.088    -0.084    -0.095 

   (-4.03)    (-4.63)    (-3.39)    (-2.77) 
δP 3.452 -1.663 -2.388  3.345 -0.511 -0.895  -1.121 -6.762 -7.512  -1.123 -6.634 -6.698 
 (2.57) (-0.91) (-1.26)  (3.20) (-0.34) (-0.55)  (-0.61) (-2.67) (-2.86)  (-0.73) (-3.64) (-3.49) 

δN -0.884 3.957 4.567  0.705 5.988 6.772  2.297 8.212 9.035  3.757 11.810 12.774 
 (-0.72) (2.16) (2.28)  (0.57) (3.18) (3.07)  (1.27) (3.68) (3.63)  (1.66) (4.05) (3.77) 

ϕ(1)  0.103 0.066   0.114 0.074   0.156 0.112   0.193 0.148 
  (4.23) (2.54)   (4.25) (2.63)   (6.18) (3.72)   (5.08) (3.79) 

Adj.R2 (%) 0.145 0.888 1.150  0.196 1.069 1.360  0.051 1.168 1.344  0.129 1.459 1.635 
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Table 3 
Asymmetry in Investors’ Adjustment to Mispricing 

 
This table reports the estimation results of Models 4 and 5 over January 1926–December 2015: 
 

Model 4: 1,1

5

1
1,

2
1,1

5

1
1,

2
1,11, )ˆ()ˆ( 





  tmt

j
jtmNjtmNt

j
jtmPjtmPtm NdrPdrcr  , 

Model 5: 1,1

5

1
1,

2
1,21

5

1
1,

2
1,11, )ˆ()ˆ( 





  tmt

j
jtmNjtmNt

j
jtmPjtmPtm NdrcPdrcr  ,   

 

where ϕPj (ϕNj) is the jth order return autocorrelation coefficient under prior d-day positive (negative) price changes.  


5

1
)1(

j
PjP   and 



5

1
)1(

j
NjN  .  For the 

conditional market volatility, we use 2
,tmh  estimated from the EGARCH (1,1) model, and 2

,tm  estimated from the AR(12) model on the realized volatility series.  

Pdt+1 (Ndt+1) is the dummy to capture prior d-day positive (negative) price changes, such that P1t+1 = 1 when em,t > 0 (N1t+1 = 1 when em,t < 0) and P2t+1 = 1 when 
em,t > 0 and em,t-1 > 0 (N2t+1 = 1 when em,t < 0 and em,t-1 < 0).  The RRA parameter is measured by δP (δN) under prior d-day positive (negative) price changes.  The 
numbers in parentheses are the Newey-West (1987) adjusted t-statistics. Adj.R2 (%) is the percentage adjusted R2. 
 
 Panel A: Prior 1-day Positive-Negative Price Changes  Panel B: Prior 2-day Positive-Negative Price Changes 
 2

1, tmh  2
1, tm   2

1, tmh  2
1, tm  

 Model 4 Model 5 Model 4 Model 5  Model 4 Model 5 Model 4 Model 5 
c1(×100) 0.003 0.074 -0.006 0.067  0.013 0.095 0.013 0.078 

 (0.26) (4.72) (-0.51) (4.67)  (1.13) (4.45) (1.21) (3.83) 
c2(×100)  -0.080  -0.093   -0.152  -0.132 

  (-4.39)  (-4.12)   (-3.44)  (-3.79) 
δP -2.453 -3.369 -0.565 -1.012  -7.808 -7.594 -7.917 -7.151 
 (-1.56) (-1.79) (-0.29) (-0.50)  (-2.79) (-2.69) (-4.13) (-3.59) 

δN 3.271 3.900 6.412 7.267  5.325 3.927 11.492 9.468 
 (1.80) (2.00) (3.52) (3.58)  (1.98) (1.16) (2.98) (2.55) 

ϕP(1) 0.109 0.055 0.101 0.042  0.140 0.049 0.177 0.095 
 (2.55) (1.29) (1.92) (0.79)  (2.66) (0.75) (3.62) (1.49) 

ϕN(1) 0.098 0.075 0.130 0.107  0.016 -0.103 0.113 -0.003 
 (2.59) (1.92) (2.91) (2.32)  (0.24) (-1.25) (1.37) (-0.03) 

Adj.R2 (%) 1.035 1.321 1.222 1.533  0.469 0.776 0.741 0.953 
H0: ϕP(1) – ϕN(1) 0.011 -0.020 -0.029 -0.064  0.124 0.152 0.064 0.098 

(t-value) (0.17) (-0.31) (-0.37) (-0.79)  (1.41) (1.50) (0.76) (1.10) 
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Table 4 
The Relationship between Excess Market Returns and Contemporary Volatility Innovations 

 
This table reports the estimation results of the indirect risk-return relation in Model 6 over the period January 1926–December 2015: 
 

Model 6: 
5

2 2
, 1 1 1 2 1 1 1 , 1 1 1 , 1 , 1 , 1

1
ˆ ˆ( ) ( )m t t t P t N t m t P t N t m t j m t j m t

j
r c P1 c N1 P1 N1 P1 N1 r                  


        , 

 
where rm,t+1 is daily realized excess returns of value-weighted index and 2

1,ˆ tm  is the conditional market volatility, for which we use 2
,tmh  estimated from the 

EGARCH (1,1) model and 2
,tm  estimated from the AR(12) model.  2

1,ˆ tm  is the contemporaneous volatility innovation that represents unexpected volatility 

changes, for which we use two measures, 2
,

2
, tmtm he   and 2

,
2

, tmtme  .  The indirect risk-return relation is measured by P (N) under a prior positive (negative) 

price change.  P1t+1 = 1 when em,t > 0 and N1t+1 = 1 when em,t < 0.  ϕj is the jth order return autocorrelation coefficient, and 


5

1
)1(

j
j .  The numbers in 

parentheses are the Newey-West (1987) adjusted t-statistics.  Adj.R2 (%) is the percentage adjusted R2.
   

Panel A. 2
,tmh  as the conditional market volatility and 2

,
2

, tmtm he   

as contemporaneous volatility innovation 

 Panel B. 2
,tm  as the conditional market volatility and 2

,
2

, tmtme   as 

contemporaneous volatility innovation 
 2

,
2

,
2

,ˆ tmtmtm he    2
,

2
,

2
,ˆ tmtmtm he   and 2

,
2

1,ˆ tmtm h   2
,

2
,

2
,ˆ tmtmtm e     2

,
2

,
2

,ˆ tmtmtm e    and 2
,

2
1,ˆ tmtm     

 [A] [B]  [C] [D] [E] [F]  [A] [B]  [C] [D] [E] [F] 
c1(×100) 0.034 0.113  0.024 0.102 0.020 0.068  0.031 0.107  0.012 0.103 0.008 0.081 

 (4.41) (10.92)  (2.74) (10.91) (2.18) (4.04)  (4.26) (12.39)  (1.49) (7.91) (1.06) (6.60) 
c2(×100)  -0.058   -0.071  -0.034   -0.059   -0.098  -0.075 

  (-6.10)   (-5.77)  (-2.15)   (-6.13)   (-7.52)  (-5.40) 
δP    1.440 1.101 -0.438 0.142     3.447 0.336 -1.973 -2.750 
    (2.62) (1.97) (-0.61) (0.19)     (2.51) (0.21) (-0.97) (-1.31) 

δN    0.553 1.635 2.346 1.807     0.363 3.173 5.434 6.108 
    (1.03) (1.64) (2.47) (1.96)     (0.45) (3.17) (3.95) (4.16) 
P 2.873 2.977  3.127 3.168 2.958 3.004  3.388 3.384  3.362 3.381 3.312 3.310 
 (1.85) (1.94)  (1.99) (2.04) (1.88) (1.90)  (2.27) (2.27)  (2.23) (2.25) (2.21) (2.20) 
N -3.288 -3.214  -3.341 -3.313 -3.316 -3.332  -3.135 -3.068  -3.142 -3.229 -3.244 -3.297 
 (-2.38) (-2.31)  (-2.42) (-2.39) (-2.53) (-2.50)  (-2.20) (-2.15)  (-2.29) (-2.43) (-2.46) (-2.52) 

ϕ(1)      0.098 0.048       0.101 0.061 
      (1.83) (1.93)       (3.67) (2.05) 

Adj.R2 (%) 1.814 2.447  2.052 2.665 2.892 2.990  1.862 2.459  1.976 2.585 2.767 3.065 
 
  



42 
 

Table 5 
Intertemporal Risk-Return Relation under High and Low Investor Sentiment 

 
This table reports the estimation results of the following Model 7 over July 1965–September 2015: 
 

Model 7: 
2

, 1 1 1 1 1 1 1 , 1 1 1 , 1 , 1ˆ[( ) ( ) ] [ ( ) ( ) ]l l h h
m t P t N t t P t N t t m t L t H t m t m tr c Pd Nd L Pd Nd H L L L H r                            ,        

 
where H (L) is the dummy representing high- (low-) sentiment regimes over July 1965–September 2015.  We also estimate Model 7 when allowing for a separate 
constant term in high and low sentiment regimes.  The RRA parameter in the low-sentiment regime is measured by δl

P (δl
N) under prior a d-day positive (negative) 

price change, while δh
P (δh

N) measures the RRA parameter under prior a d-day positive (negative) price change in the high-sentiment regime.  The price 
adjustment process during the high-sentiment regime is measured by ϕH(1), while it is measured by ϕL(1) during the low-sentiment regime.  The numbers in 
parentheses are the Newey-West (1987) adjusted t-statistics.  Adj.R2 (%) is the percentage adjusted R2.  
 
  Panel A: Prior 1-day 

Positive or Negative Price Changes 
 Panel B: Prior 2-day Consecutive 

Positive or Negative Price Changes 
 Panel C: Prior 3-day Consecutive 

Positive or Negative Price Changes 
  2

1, tmh  2
1, tm   2

1, tmh  2
1, tm   2

1, tmh  2
1, tm  

c(×100)  0.008 0.025 0.016 0.025  0.015 0.004 0.020 -0.002  0.022 0.029 0.018 0.027 
  (0.82) (1.63) (1.37) (1.24)  (1.16) (0.20) (1.62) (-0.08)  (2.29) (1.97) (1.85) (1.83) 
c1(×100)   -0.011  0.007   0.023  0.037   0.014  0.009 
   (-0.87)  (0.51)   (1.40)  (2.48)   (1.16)  (0.74) 
δl

P  -3.924 -4.297 -0.087 -0.322  -3.078 -2.803 0.032 0.622  -4.140 -4.347 -1.317 -1.602 
  (-2.87) (-3.45) (-0.08) (-0.30)  (-2.00) (-1.99) (0.01) (0.20)  (-2.01) (-2.09) (-0.60) (-0.74) 
δl

N  4.701 4.310 1.368 1.160  9.562 9.846 9.418 10.131  3.362 3.104 3.540 3.214 
  (2.04) (2.04) (0.41) (0.33)  (4.78) (4.88) (3.49) (3.67)  (1.83) (1.77) (0.65) (0.60) 
δh

P  2.601 3.367 4.803 5.018  -4.661 -5.055 -0.897 -1.533  -13.546 -13.106 -6.735 -6.472 
  (1.86) (2.64) (3.22) (3.78)  (-2.01) (-2.10) (-0.53) (-0.93)  (-4.22) (-4.06) (-3.36) (-3.31) 
δh

N  1.563 2.357 -4.063 -3.752  1.330 1.001 -7.268 -7.656  10.286 10.546 11.213 11.663 
  (0.82) (1.09) (-1.25) (-1.08)  (1.29) (1.22) (-1.72) (-1.87)  (2.24) (2.24) (2.04) (2.06) 
ϕL(1)  0.076 0.071 0.018 0.016  0.119 0.122 0.082 0.087  0.045 0.043 0.033 0.031 
  (1.59) (1.50) (0.25) (0.23)  (3.47) (3.54) (1.58) (1.68)  (0.94) (0.90) (0.43) (0.41) 
ϕH(1)  0.035 0.041 -0.009 -0.007  0.049 0.047 -0.019 -0.020  0.114 0.115 0.099 0.100 
  (1.02) (1.21) (-0.25) (-0.18)  (1.31) (1.25) (-0.43) (-0.45)  (3.19) (3.21) (2.31) (2.33) 
Adj.R2 (%)  0.785 0.799 0.822 0.819  0.952 0.950 1.040 1.061  0.825 0.820 0.724 0.721 
δh

P ‒ δl
P             -9.405 -8.759 -5.418 -4.870 
            (-2.41) (-2.19) (-1.82) (-1.67) 

δh
N ‒ δl

N             6.924 7.442 7.673 8.449 
            (2.34) (2.46) (2.14) (2.30) 
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Table 6 
Sub-periods Analysis for Intertemporal Relation between Excess Market Returns and Market Volatility 

 
This table reports the estimation results of following models for two sub-periods having an equal number of observations: 
 

Model 1: 1,
2

1,1111, ˆ)(   tmtmtNtPtm NdPdcr      

Model 2: 1,

5

1
,

2
1,1111, ˆ)( 


  tm

j
jtmjtmtNtPtm rNdPdcr    

Model 3: 1,

5

1
,

2
1,1112111, ˆ)( 


  tm

j
jtmjtmtNtPtttm rNdPdNdcPdcr  , 

 

where rm,t+1 is daily realized excess market return and 2
1,ˆ tm  is the daily conditional market volatility, for which we use 2

,tmh  estimated from the EGARCH (1,1) 

model.  ϕj is the jth order return autocorrelation coefficient. ϕ(1) is the sum of autocorrelation coefficients, i.e., 


5

1
)1(

j
j .  Pdt+1 (Ndt+1) is the dummy to 

capture prior d-day positive (negative) price changes, such that P1t+1 = 1 when em,t > 0 (N1t+1 = 1 when em,t < 0) and P2t+1 = 1 when em,t > 0 and em,t-1 > 0 (N2t+1 = 
1 when em,t < 0 and em,t-1 < 0).  The RRA parameter is measured by δP (δN) under prior d-day positive (negative) price change(s).  The numbers in parentheses are 
the Newey-West (1987) adjusted t-statistics.  Adj.R2 (%) is the percentage adjusted R2. 
 
 Panel A: 1st Sub-period: Jan. 2, 1926 – Oct. 29, 1968  Panel B: 2nd Sub-period: Oct. 31, 1968 – Dec. 31, 2015 

 Prior 1-day Price Changes  Prior 2-day Consecutive  
Price Changes 

 Prior 1-day Price Changes  Prior 2-day Consecutive  
Price Changes 

 Model 1 Model 2 Model 3  Model 1 Model 2 Model 3  Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 
c1(×100) 0.023 0.016 0.077  0.035 0.024 0.080  0.006 0.006 0.086  0.012 0.009 0.101 

 (2.20) (1.69) (4.80)  (3.00) (2.14) (4.25)  (0.41) (0.41) (3.21)  (0.63) (0.47) (3.69) 
c2(×100)   -0.060    -0.047    -0.077    -0.124 

   (-2.63)    (-1.72)    (-3.86)    (-2.43) 
δP 3.583 -1.833 -2.264  -2.578 -8.691 -9.200  3.724 -0.799 -2.156  1.271 -3.484 -4.833 
 (2.04) (-0.71) (-0.93)  (-1.09) (-2.40) (-2.45)  (1.27) (-0.27) (-0.83)  (0.44) (-1.08) (-1.31) 

δN -1.422 3.765 4.289  1.842 8.113 8.550  -0.166 3.727 4.598  2.497 7.240 8.859 
 (-0.96) (1.99) (2.16)  (1.33) (3.42) (3.37)  (-0.12) (2.09) (2.33)  (0.62) (2.15) (2.12) 

ϕ(1)  0.147 0.116   0.211 0.181   0.042 -0.004   0.077 0.016 
  (4.01) (3.10)   (5.28) (3.94)   (1.31) (-0.10)   (2.71) (0.41) 

Adj.R2 (%) 0.21 1.44 1.67  0.07 1.84 1.92  0.10 0.49 0.81  0.03 0.62 0.92 
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Table 7 
Sub-periods Analysis for the Indirect Relationship between Excess Market Returns and Contemporary Volatility Innovations 

 
This table reports the estimation results of the indirect risk-return relation in Model 6 for two sub-periods with an equal number of observations: 
 

Model 6: 
5

2 2
, 1 1 1 2 1 1 1 , 1 1 1 , 1 , 1 , 1

1
ˆ ˆ( ) ( )m t t t P t N t m t P t N t m t j m t j m t

j
r c P1 c N1 P1 N1 P1 N1 r                  


        , 

 
where rm,t+1 is daily realized excess returns of value-weighted index and 2

1,ˆ tm  is the conditional market volatility, for which we use 2
,tmh  estimated from the 

EGARCH (1,1) model.  2
1,ˆ tm  is the contemporaneous volatility innovation that represents unexpected volatility changes, for which we use two measures, i.e., 

2
,

2
,

2
,ˆ tmtmtm he  .  The indirect risk-return relation is measured by P (N) under a prior positive (negative) price change.  P1t+1 = 1 when em,t > 0 and N1t+1 = 1 

when em,t < 0.  ϕj is the jth order return autocorrelation coefficient, and 


5

1
)1(

j
j .  The numbers in parentheses are the Newey-West (1987) adjusted t-statistics.  

Adj.R2 (%) is the percentage adjusted R2.
   

Panel A. 1st Sub-period: Jan. 2, 1926 – Oct. 29, 1968  
(11,893 Observations) 

 Panel B. 2nd Sub-period: Oct. 31, 1968 – Dec. 31, 2015  
(11,893 Observations) 

 2
,

2
,

2
,ˆ tmtmtm he    2

,
2

,
2

,ˆ tmtmtm he   and 2
,

2
1,ˆ tmtm h   2

,
2

,
2

,ˆ tmtmtm he    2
,

2
,

2
,ˆ tmtmtm he   and 2

,
2

1,ˆ tmtm h  

 [A] [B]  [C] [D] [E] [F]  [A] [B]  [C] [D] [E] [F] 
c1(×100) 0.041 0.125  0.023 0.118 0.014 0.084  0.023 0.090  -0.005 0.094 -0.004 0.082 

 (3.39) (7.85)  (1.58) (5.52) (1.08) (4.46)  (2.31) (5.88)  (-0.41) (5.54) (-0.29) (3.55) 
c2(×100)  -0.066   -0.102  -0.073   -0.053   -0.116  -0.094 

  (-4.57)   (-6.01)  (-3.48)   (-3.87)   (-5.48)  (-3.97) 
δP    3.726 0.770 -2.663 -3.322     3.279 -0.436 -2.042 -3.149 
    (1.61) (0.28) (-0.77) (-0.93)     (1.05) (-0.18) (-0.78) (-1.44) 

δN    -0.133 2.947 6.114 6.953     2.254 5.632 6.948 7.597 
    (-0.15) (2.78) (3.89) (3.84)     (1.64) (3.22) (4.06) (3.57) 
P 3.912 3.971  3.888 3.963 3.942 3.946  -2.134 -1.838  -2.082 -1.843 -1.479 -1.560 
 (3.38) (2.74)  (3.53) (2.75) (3.78) (2.77)  (-0.76) (-0.63)  (-0.65) (-0.59) (-0.51) (-0.54) 
N -2.433 -2.319  -2.399 -2.598 -2.521 -2.644  -4.078 -4.037  -4.192 -4.326 -4.453 -4.505 
 (-1.82) (-1.17)  (-1.81) (-1.23) (-1.80) (-1.24)  (-2.46) (-2.40)  (-2.52) (-2.75) (-3.07) (-3.15) 

ϕ(1)      0.163 0.128       0.044 -0.009 
      (3.95) (2.78)       (1.08) (-0.19) 

Adj.R2 (%) 2.21 2.93  2.38 3.03 3.66 3.95  2.29 2.77  2.45 3.10 3.08 3.45 
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Table 8 
Estimation Results of Intertemporal Capital Asset Pricing Model on Ten Size Decile Portfolios 

 
This table reports the estimation results of Models 8 and 9 for the ten size decile portfolios over the period January 1926–December 2015: 
 

Model 8: , 1 1 1 , 1 , 1ˆ( )i t iP t iN t im t i tr c Pd Nd            ,  

Model 9: 
5

, 1 1 1 , 1 , 1 , 1
1

ˆ( )i t iP t iN t im t ij i t j i t
j

r c Pd Nd r          


      ,  

 
where ri,t+1 is the excess returns of ith size decile portfolio and 1,ˆ tim  is its conditional covariance with the market portfolio, for which we use the two measures.  

The first measure ( ,im th ) is the conditional covariance forecast that is estimated from the DCC multivariate GARCH model on ri,t and rm,t.  The second one ( ,im t ) 

is the covariance forecast that is estimated from the AR(12) process on the series of tmti ee ,,   for ith portfolio.  ϕij is the jth order autocorrelation coefficient of ith 

portfolio returns, and 


5

1
)1(

j
iji  .  P1

t+1 = 1 when ei,t > 0 and N1
t+1 = 1 when ei,t < 0.  P2

t+1 = 1 when ei,t > 0 and ei,t-1 > 0 and N2
t+1 = 1 when ei,t < 0 and ei,t-1 < 0.  

The individual RRA parameter is measured by δiP (δiN) under prior d-day positive (negative) price change.  The numbers in parentheses are the Newey-West 
(1987) adjusted t-statistics. Adj.R2 (%) is the percentage adjusted R2. 
 
Panel A. Prior One-day Positive and Negative Price Change  
 Small FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 Large 
Estimation Results for Model 8 

c(×100) 0.017 0.016 0.014 0.017 0.021 0.021 0.019 0.020 0.025 0.021 
 (1.55) (1.52) (1.36) (1.70) (2.17) (2.23) (2.01) (2.34) (3.02) (2.83) 

δiP 4.796 5.854 5.977 5.690 4.320 4.407 3.832 3.513 3.228 0.874 
 (5.68) (5.08) (5.43) (5.69) (4.86) (4.92) (4.89) (4.52) (4.19) (0.84) 

δiN -1.094 -3.189 -3.360 -3.588 -2.920 -2.873 -2.017 -2.101 -2.074 0.064 
 (-1.59) (-3.30) (-4.02) (-3.32) (-3.05) (-2.64) (-2.00) (-1.79) (-1.70) (0.06) 

Adj.R2 (%) 1.583 1.903 1.718 1.380 0.807 0.790 0.536 0.436 0.367 0.009 
Estimation Results for Model 9 

c (×100) 0.006 0.002 0.008 0.003 0.012 0.013 0.015 0.016 0.019 0.021 
 (0.56) (0.22) (0.77) (0.39) (1.29) (1.45) (1.54) (1.95) (2.42) (2.75) 

δiP 0.297 0.232 0.219 0.083 -0.792 -0.240 -0.595 -0.746 -0.802 -1.577 
 (0.57) (0.25) (0.24) (0.08) (-0.83) (-0.22) (-0.66) (-0.74) (-0.75) (-1.13) 

δiN 3.186 3.305 2.216 3.444 2.959 2.454 2.486 2.409 2.472 2.470 
 (2.47) (2.48) (1.69) (2.18) (2.38) (1.82) (1.98) (1.67) (1.71) (1.78) 

ϕi(1) 0.378 0.370 0.320 0.306 0.268 0.233 0.198 0.173 0.159 0.045 
 (13.59) (12.46) (9.97) (10.72) (10.59) (9.11) (7.72) (6.55) (6.01) (1.85) 

Adj.R2 (%) 6.115 6.880 6.024 5.244 3.492 3.028 2.406 1.885 1.720 0.505 
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Panel B. Prior Two-day Positive and Negative Price Change  
 Small FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 Large 
Estimation Results for Model 8 

c(×100) 0.032 0.024 0.020 0.026 0.032 0.029 0.033 0.033 0.033 0.025 
 (2.35) (2.10) (1.85) (2.55) (3.12) (2.86) (3.11) (3.29) (3.75) (3.06) 

δiP 4.536 5.057 4.848 4.177 2.212 2.282 1.228 -0.013 -0.187 -2.462 
 (3.93) (3.66) (4.14) (3.81) (1.90) (1.94) (1.07) (-0.01) (-0.15) (-1.93) 

δiN -1.095 -2.237 -1.503 -2.668 -2.409 -1.281 -1.384 -0.932 0.111 3.038 
 (-1.25) (-1.45) (-1.11) (-1.87) (-1.54) (-0.99) (-0.94) (-0.64) (0.08) (2.10) 

Adj.R2 (%) 0.959 0.811 0.566 0.447 0.167 0.100 0.045 0.003 -0.008 0.180 
Estimation Results for Model 9 

c (×100) 0.013 0.006 0.008 0.009 0.020 0.018 0.025 0.025 0.023 0.022 
 (0.97) (0.61) (0.71) (0.99) (2.20) (1.90) (2.40) (2.68) (2.74) (2.66) 

δiP -0.432 -0.686 -0.635 -0.811 -2.693 -2.344 -2.915 -4.494 -4.334 -5.031 
 (-0.52) (-0.75) (-0.88) (-0.88) (-2.44) (-1.59) (-2.28) (-2.97) (-2.95) (-2.75) 

δiN 5.233 5.722 4.875 5.232 4.229 4.976 3.554 4.687 5.960 5.982 
 (2.03) (2.85) (2.19) (2.92) (2.43) (3.01) (1.81) (2.67) (3.09) (2.87) 

ϕi(1) 0.407 0.401 0.350 0.328 0.293 0.268 0.223 0.217 0.212 0.094 
 (13.12) (11.22) (10.16) (12.12) (10.32) (10.00) (6.65) (6.88) (6.74) (2.99) 

Adj.R2 (%) 6.210 7.033 6.240 5.297 3.540 3.164 2.455 2.083 1.994 0.789 
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Table 9 
The Relationship between Excess Returns and Contemporary Covariance Innovations 

 
This table reports the estimation results of the indirect risk-return relation in Model 10 for the ten size portfolios over the period January 1926–December 2015: 
 

Model 10: 2 2
, 1 1 1 1 , 1 1 1 , 1 , 1 , 1

1
ˆ ˆ( ) ( )

p

i t iP t iN t im t iP t iN t im t ij i t j i t
j

r c P1 N1 P1 N1 r                


       , 

 
where 1, tir  is the excess returns of ith size decile portfolio and 1,ˆ tim  is its conditional covariance with the market returns, for which we use ,im th  estimated from 

the DCC multivariate GARCH model and ,im t  estimated from the AR(12) process on tmti ee ,,  .  , 1ˆim t   is the contemporaneous conditional covariance 

innovation, for which we use two measures, the forecast errors of ,im th  computed as , , ,i t m t im te e h   and the forecast errors of ,im t  computed as , , ,i t m t im te e   .  

ϕij is the jth order autocorrelation coefficient of ith portfolio returns, and 


5

1
)1(

j
iji  .  P1t+1 = 1 when ei,t > 0 and N1t+1 = 1 when ei,t < 0.  The ith portfolio’s the 

indirect risk-return relation is measured by iP (iN) under a prior positive (negative) price change.  The numbers in parentheses are the Newey-West (1987) 
adjusted t-statistics.  Adj.R2 (%) is the percentage adjusted R2. 
 
Panel A. ,im th  as Conditional Covariance Forecast and , , ,i t m t im te e h   as Contemporaneous Covariance Innovation  

 Small FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 Large 
c(×100) 0.003 0.001 0.006 0.004 0.014 0.014 0.017 0.017 0.017 0.020 

 (0.27) (0.12) (0.57) (0.47) (1.53) (1.51) (1.76) (2.15) (2.21) (2.89) 
iP 4.485 4.068 4.543 3.447 3.325 3.517 3.520 2.504 3.051 2.806 

 (1.60) (2.13) (3.04) (2.02) (1.79) (2.22) (2.02) (1.34) (1.90) (1.84) 
iN -2.754 -4.548 -3.145 -4.651 -4.880 -4.837 -4.521 -3.785 -2.977 -2.474 

 (-1.01) (-2.18) (-2.09) (-3.08) (-4.58) (-4.68) (-4.32) (-3.58) (-2.36) (-1.96) 
δiP 4.244 3.358 3.582 2.364 1.210 1.695 1.319 0.471 0.607 -0.488 

 (1.55) (1.73) (2.33) (1.51) (0.89) (1.20) (1.09) (0.36) (0.43) (-0.28) 
δiN 1.161 1.290 0.645 2.110 1.613 1.521 1.329 1.920 2.475 2.372 

 (0.44) (0.73) (0.38) (1.16) (1.13) (1.15) (0.87) (1.32) (1.64) (1.66) 
ϕi(1) 0.356 0.337 0.292 0.265 0.226 0.192 0.159 0.142 0.138 0.029 

 (9.52) (9.42) (8.40) (7.33) (7.45) (6.14) (5.30) (4.53) (4.58) (0.86) 
Adj.R2 (%) 7.909 9.804 8.864 8.004 6.399 5.904 5.240 3.583 3.247 1.704 
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Panel B. ,im t  as Conditional Covariance Forecast and , , ,i t m t im te e    as Contemporaneous Covariance Innovation   

 Small FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 Large 
c(×100) 0.006 -0.001 0.009 0.001 0.009 0.010 0.013 0.012 0.016 0.018 

 (0.43) (-0.13) (0.81) (0.06) (0.77) (0.92) (1.15) (1.20) (1.60) (2.00) 
iP 3.907 3.394 4.135 3.010 2.978 3.183 3.232 2.131 2.731 2.320 

 (1.33) (1.70) (2.60) (1.64) (1.56) (1.97) (1.80) (1.13) (1.72) (1.49) 
iN -3.006 -4.832 -3.387 -5.092 -5.456 -5.391 -5.084 -4.475 -3.791 -3.072 

 (-1.05) (-2.18) (-2.17) (-3.23) (-4.99) (-5.03) (-4.69) (-4.18) (-3.00) (-2.16) 
δiP 0.280 -0.074 0.017 -0.317 -1.306 -0.881 -1.209 -1.275 -1.387 -2.049 

 (0.49) (-0.09) (0.02) (-0.29) (-1.33) (-0.80) (-1.44) (-1.17) (-1.30) (-1.43) 
δiN 3.845 5.237 3.458 5.776 5.433 5.089 4.795 4.808 4.938 4.346 

 (2.43) (4.15) (2.19) (4.04) (4.35) (4.27) (3.69) (3.55) (3.42) (4.36) 
ϕi(1) 0.375 0.370 0.318 0.300 0.261 0.228 0.194 0.170 0.163 0.044 

 (11.93) (12.11) (9.89) (9.38) (8.81) (7.58) (7.07) (5.53) (5.74) (1.45) 
Adj.R2 (%) 7.709 9.658 8.715 8.163 6.633 6.181 5.459 3.874 3.623 1.914 

 
 


